Lunar Dust and Dusty Plasma Physics

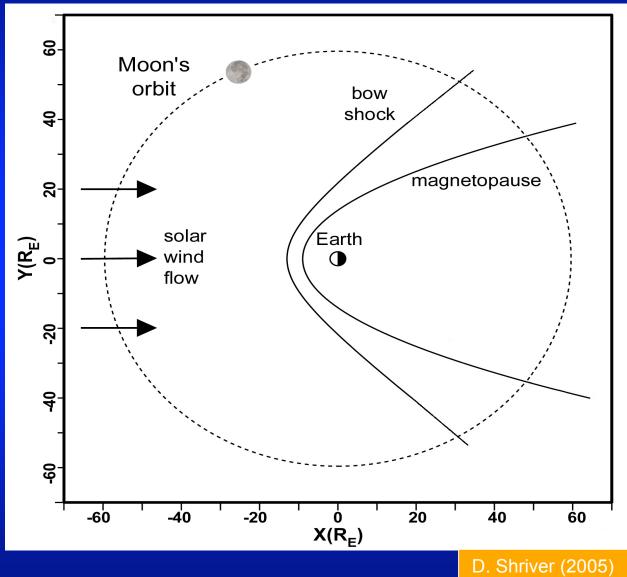
Thomas Wilson

NASA Johnson Space Center, Houston, Texas

July 22, 2008

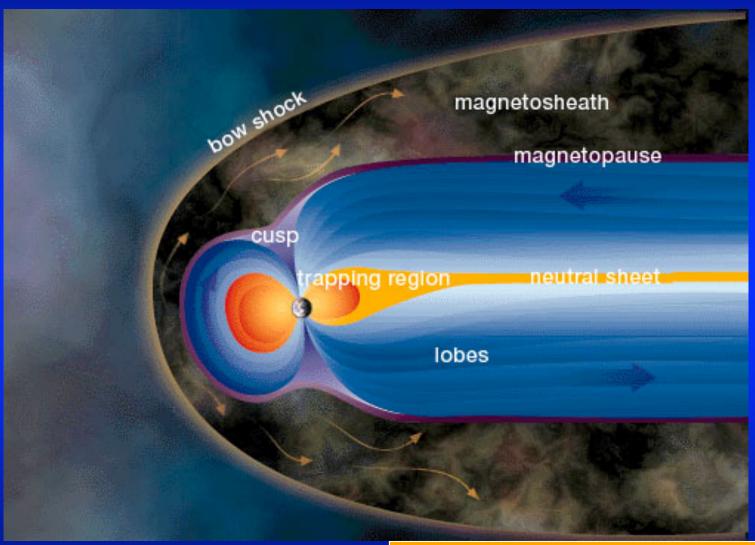
Summary

- A brief review of the Earth-Moon plasma environment.
- Discussion of how the dusty plasma environment links to exploration.


Exposure Dilemma

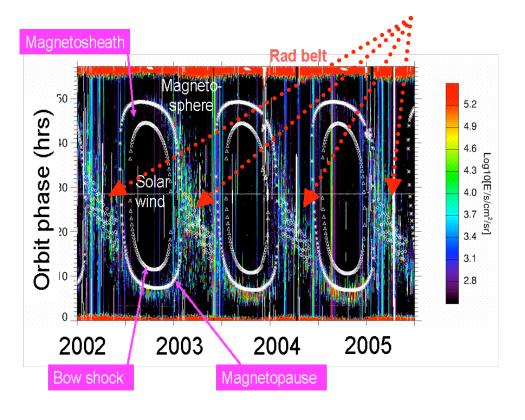
- If a person or instrument were standing on the Moon, what sort of environment or "weather" would one experience?
- There are many answers (e.g., cosmic rays are fierce).
- In this session we are focusing on direct exposure to space plasmas.

Direct Interaction with Sun, Earth, and Meteoroids

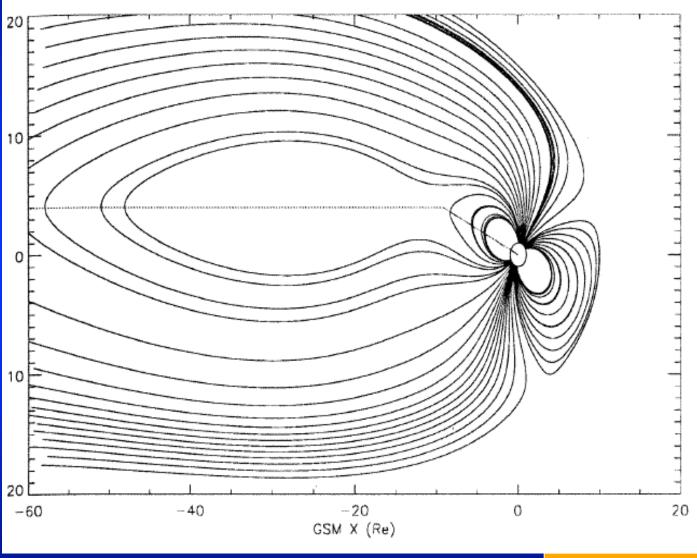

- Direct Solar Wind
- Earth's magnetotail and plasmasheet
- Wake of the Moon
- Transient Na "atmosphere" during Leonid showers.

Direct Solar Wind

T. Wilson


Earth's Magnetotail & Plasmasheet

Mike Hapgood (2007) Ann. Geophys. 25, 2037


ESA's Cluster Observation of Plasmasheet

Plasmasheet

Summary of
50 keV
electrons
seen by
ESA's
4 Cluster
Satellites

Moon's Interaction with Plasmasheet

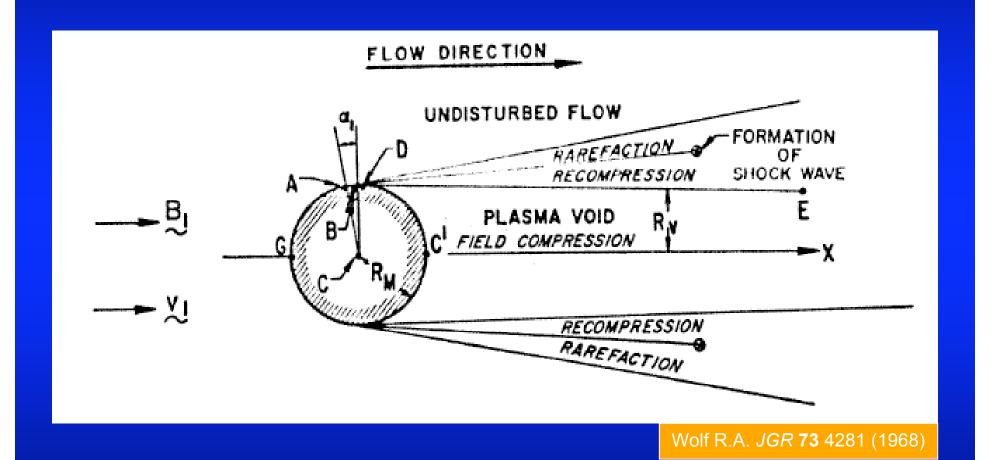
T. Wilson

Rutherford Appleton Lab

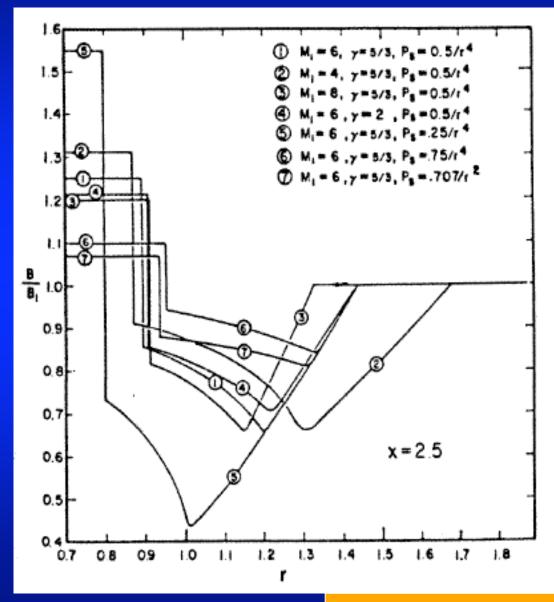
Moon's Interaction with Plasmasheet

- The Moon occasionally encounters dense hot plasma of the Earth's plasmasheet.
- Lunar surface can build up a charge under these conditions. (A "hair-raising" event for astronauts?)
- Observed by Lunar Prospector.
- Moon crosses Earth's magnetotail around Full Moon.
 - Approx. 4 to 5 days per month.
 - $\pm 5 R_E$ wrt Ecliptic.
 - There is an 18.6 yr cycle
 in lunar charging.

Nodes precess 360° in 18.6 vears

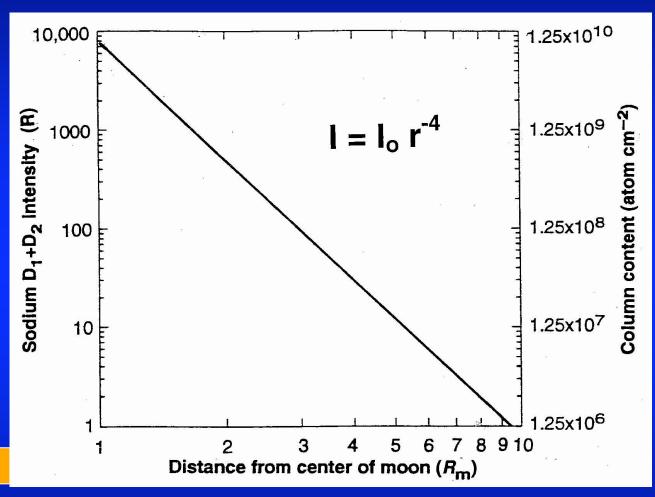

Moon's orbit inclined by Lab

plane


The Wake of the Moon has Unexpected Features

- "Behind the Moon" is also relevant to dust dynamics on the back side (away from the Sun).
- There exists a plasma void ("wake") during the Moon's orbit about the Sun.
- The interplanetary magnetic field, however, increases in the wake region of the Moon.

Wake of the Moon (1968)



Magnetic Field in Wake of the Moon

T. Wilson

Direct Interaction with Leonids

Boston University

Transient "atmospheric" Na tail can be seen downwind for 100's of lunar radii.

T. Wilson

Direct Interaction with Leonids

- Equations for Na lines.
- Sodium fluorescence intensity $I(r, \chi)$ is a powerlaw formula:

$$I(r, \chi) = I_o r^a$$
 where I_o
$$I_o = (1 + 6\cos 8\chi),$$

is measured in kilorayleighs, χ is the solar zenith angle (latitude), and α is

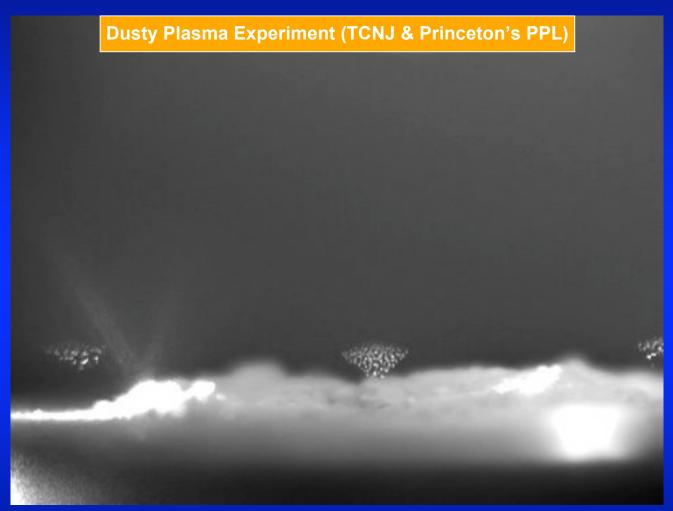
$$\alpha = 2(1 + \cos 3\chi).$$

Consequence: A Dusty Regolith Interacting With Space Plasmas

- Question How does lunar dust interact with space plasmas?
- Answer Dusty plasma physics.

Let's Define a Dusty Plasma.

- Plasma is ubiquitous in the Universe.
 - It is a fourth state of matter (besides solid, liquid, gas).
 - It is an ionized or charged gas that is highly conductive.
- Dust grains are also quite common in the Universe.
 - Dust is the powder form of solid matter.
 - Dust can be readily charged just like elementary particles.
 - Dust can be picked up by a passing plasma (pickup dust) or kicked up by sputtering (and vulcanism).
 - Unlike elementary particles or ionized nuclei (CRs):
 - It has a different charge-to-mass ratio.
 - It retains its material properties as solid matter (dielectric and magnetic) with **surface potentials**. Scalar properties become tensors.
- Dusty plasmas are studied in the rings of Jupiter and Uranus, etc. We have come a long way since Apollo.


Let's Define a Dusty Plasma (2).

- Dusty plasma is a plasma that suspends nanometer or micrometer-sized particles.
- Occurrence
 - Space plasmas
 - Industrial applications (on Earth)
- Properties
 - Temperature

Dusty Plasma Constituent	Temperature	Temperature
Dust temperature	10 K	~ 10 ⁻³ eV
Molecular temperature	100 K	~ 10 ⁻² eV
Ion temperature	1,000 K	~ 10 ⁻¹ eV
Electron temperature	10,000 K	0.86 eV

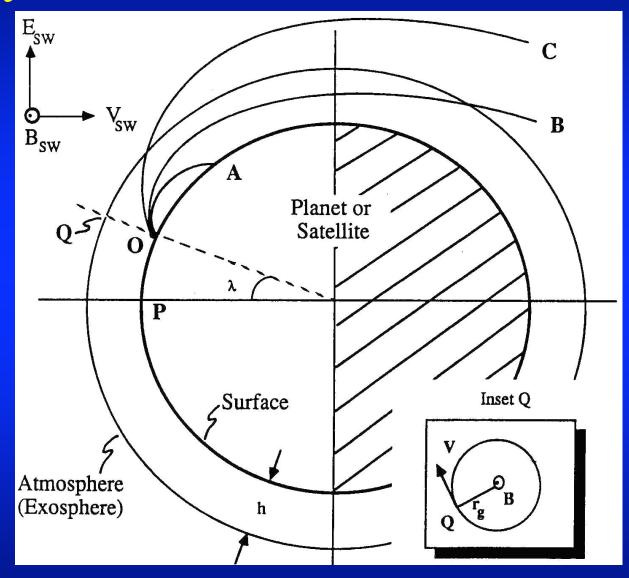
- Electric Potential: \pm 1-10 V (or kV's in relativistic cases)

Example of a Dusty Plasma.

Dust clouds form where gravitation & electromagnetism offset (levitation). Three appear above at equilibrium points determined by chamber geometry.

T. Wilson

Relevance to Lunar Exploration


Dust transport

- Levitation and transport of lunar dust has been under study since the Apollo era.
- Dust mitigation is hence a major environmental issue.
- Dusty plasma physics is key to dust transport.
 - This is more than electrodynamics and Leyden jars.
 - Involves MHD and plasmas the physics of highly conductive ionized gas flow (fluid mechanics plus electromagnetism).
 - Involves the transport of charge via pickup dust in the presence of space plasmas and magnetic fields.

Electric potentials and charging

- Moon's electric potentials are dynamic and timedependent. These need to be modelled and measured.
- Potentials produce electric fields (which transport dust).
- Risk involves charging/discharging in lunar ops.

Dusty Plasma Levitation Geometry

Dusty Plasma Levitation Dynamics

- Lorentz force
- Lorentz transformation
- Ohm's law
- Plasma (Conductivity $\sigma \rightarrow \infty$) $E_{SW} = -V_{SW} \times B_{SW}$
- F = ma (gravity + EM)
- Lunar surface potential Φ_o
- Lunar electric field
- Ambient electric fields E^*
- Levitation dynamics:
 (Dusty plasma Z=Z_{dust}q)

$$F = q(E + \frac{1}{c}vxB)$$

$$E = E' - VxB$$

$$J = \sigma E' = \sigma (E + VxB)$$

$$E_{SW} = -V_{SW} x B_{SW}$$

$$\ddot{r} = -\frac{GMr}{r^3} + \frac{q}{m}(E + \frac{\dot{r}}{c}xB)$$

$$\Phi_o = kQ/r_o$$

$$E_o = -\nabla \Phi_o = \Phi_o r/r^3$$

$$E = E_o + E^*$$

$$\ddot{r} = -\frac{\mu r}{r^3} + \frac{Z}{m}(E^* + \frac{\dot{r}}{c}xB)$$

$$\mu = (GM - \frac{Z}{m}\Phi_o)$$

Space Plasmas & MHD Physics On The Moon

- There is more: MHD physics (Alfvén).
- Magneto(magnetic field)-hydro(liquid)-dynamics(motion).
- To gravitation and electromagnetism we add:
 - Fluid mechanics
 - This means the Navier-Stokes equations (nonlinear).
 - Plus Maxwell's equations (modified Ohm's Law, etc.).
- Because MHD is a *fluid* theory, it <u>cannot</u> be used for *kinetic* phenomena (Boltzmann Eq.) more on this later.

3-Dimensional MHD Equations

$$\frac{\partial \vec{A}}{\partial t} - \vec{v} \times \nabla \times \vec{A} = -\eta \nabla \times \nabla \times \vec{A} \tag{1}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \tag{2}$$

$$\frac{\partial P}{\partial t} + \nabla \cdot (P\vec{v}) = (\gamma - 1) \left[-P(\nabla \cdot \vec{v}) + \eta J^2 - \frac{1}{R_e} \mathbf{W} : \nabla \vec{v} \right]$$
 (3)

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} \right) = -\nabla P + \vec{J} \times \vec{B} - \frac{1}{R_e} \nabla \cdot \mathbf{W}$$
 (4)

Jia X. et al. (2008) JGR 113, A012748

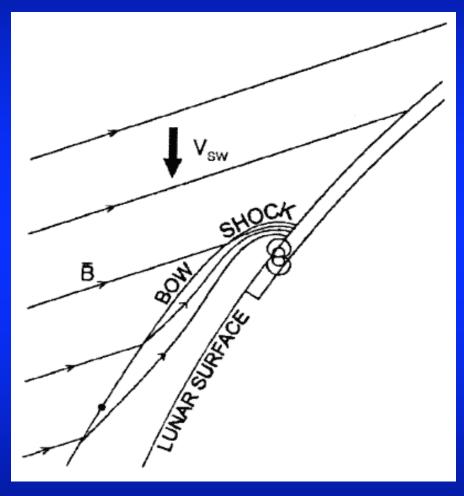
3-D MHD Equations – FLASH Code

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

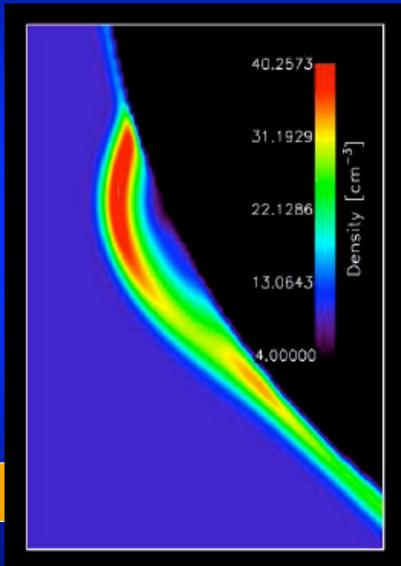
$$\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B}) = -\nabla \left(p + \frac{B^2}{2} \right) + \rho \mathbf{g}$$

$$\frac{\partial \rho E}{\partial t} + \nabla \cdot \left[\mathbf{v} \left(\rho E + p + \frac{B^2}{2} \right) - \mathbf{B} (\mathbf{v} \cdot \mathbf{B}) \right] = \rho \mathbf{g} \cdot \mathbf{v}$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v}\mathbf{B} - \mathbf{B}\mathbf{v}) = 0$$


$$E = \frac{1}{2}v^2 + \varepsilon + \frac{1}{2}\frac{B^2}{\rho}$$

Gombosi, Physics of the Space Environment (1998)

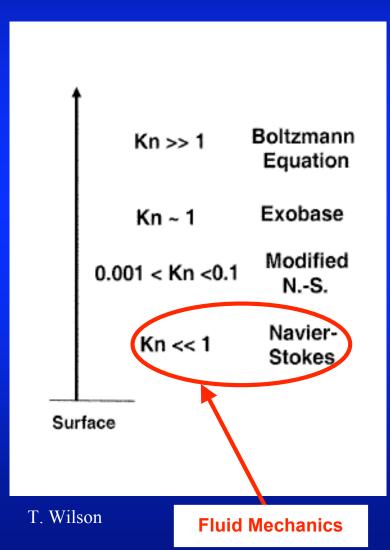

An Example When MHD <u>Does</u> Work on the Moon

- The Moon has no appreciable magnetic dipole field hence no magnetosphere.
- However, the Moon has magnetic anomalies imbedded in its surface.
- These anomalies can creat mini-bow shocks.
- They can be modelled with mini-dipoles.

Example of mini-Magnetospheres on the Moon (Lunar Prospector)

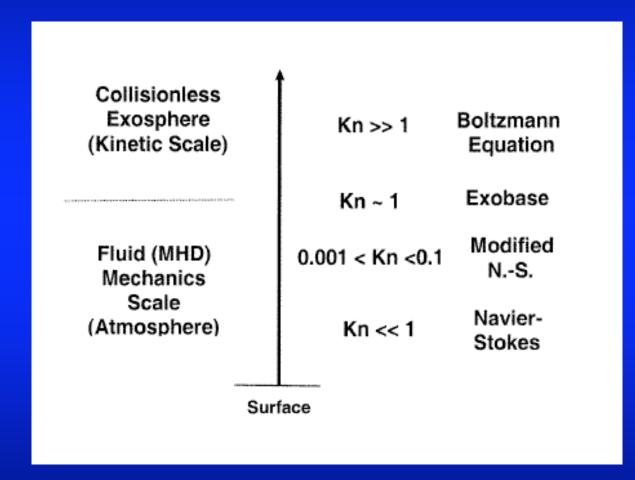
2.5D MHD Sim of mini-Magnetospheres on Moon's Surface

Harnett & Winglee (2002) *JGR* **107**, A009241


T. Wilson

Univ. of Washington

When Does MHD Not Work?


- MHD no longer works when the Navier-Stokes equations are not applicable.
- This happens when the existence of discrete particles becomes important.
- That requires the kinetics of Boltzmann transport theory.
- The Moon has both.
- Now we come to Knudsen Numbers (1911).

The Moon has an exosphere. What is an exosphere?

- The definition varies:
- Knudsen # is Kn≥1.
- Mean free path exceeds scale height.
- Consequences Kn>1:
- Discrete Simulation Monte Carlos (DSMC).
- For larger length scales (e.g. Earth radii), MHD used for bow shocks, geotail dynamics.

How Do We Define the Moon's Exosphere?

We define the Moon's exosphere as beginning with Kn ~ 1.

Conclusion

- We have reviewed some of the space physics related to the transport of dust on and about the Moon. The physics is understood.
- What is lacking?
 - The physics is very often nonlinear.
 - The Navier-Stokes problems are unsolvable.
 - This requires models, simulations, and Monte Carlos.
 - Models require laboratory study, flight data, and actual measurements.
- Both simulations and flight measurements are essential to the success of lunar exploration.